REPORT No. 144

THE DECAY OF A SIMPLE EDDY

H. BATEMAN
California Institate of Techmology

817






REPORT No. 144.

- THE DECAY OF A SIMPLE EDDY.

By H. BATEMAN.

INTRODUCTION.

This subject, which has been studied recently by G. I. Taylor! and H. A. Webb ? after
some initial investigations by Lees, is of considerable mathematical interest, as the theory
depends upon an exact solution of the equations of motion of an incompressible viscous fluid.
Since very féw exact solutions of these equations aré known,? it seems worth while to study
in detail the one which describes the behavior of a simple eddy and to find, if possible, some
further solutions of the equations. The results of this study are herein set forth for pubhcatmn
by the National Advisory Committee for Aeronautics.

SUMDMARY.

The principal result obtained in this paper is a generslization of Taylor's formula for a
simple eddy. The discussion of the properties of the eddy indicates that there is a slight
analogy between the theory of eddies in a viscous fluid and the quantum theory of radiation.
Another exact solution of the equations of motion of a viscous fluid yields a result which
reminds one of the well-known condition for instability in the case of a horizontally stratified
atmosphere. i
SOLUTION OF EQUATIONS OF TWO-DIMENSIONAL MOTION.

The equations of two-dxmensmnal motion of an incompressible viscous fluid meay be
written in the form
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where U is the radiel velocity, ¥ the transverse velocity, p the pressure, p the density, and »
the kinematic viscosity. The variables (r, 8) are cylindrical polar coordinates, ¢ is the time,
and (R, ©) are the radial and transverse components of the external force on unit mass of
the fluid.

If e=0 and p, U, V are independent of 9, equations (2) and (3) give
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1 British Advisory Canmnlftes for Aeranautics, B. & M. No. 596, December, 1918.
tR. & M. No. 608, May, 1010,
For some cases of two-dimensional steady motton ses Q. B. .Tet!ery Phil. Mag. t. 20 (1915), p. 455; @. L. Taylor, Proc. Roy. Boe. A. (1817),
p. 9%; and Lamb’s Hydrodynamies.
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The last equation gives » U= K, where K is a function of ¢ only. Equation (4) now becomes

3025 (%+r) ®

When X is constent an i.nterest.i.ng solution of the partial differential equation is

V-B"’—'“rm (7)

where s--z—Kv and B is & constant. When ¢=0 there ia no radial velocity and we obtein Taylor’s

solution. :

In the general case our solution represents an eddy with a source or sink &t the center, i. e.,
along the axis; it thus gives a very s:mple representation of the type of motion considered by
Webb and used as a model of & case in which the decay of an eddy arises from both dynamlc
and viscous causes. -

The same solution may also be used to represent an eddy whose center moves with uniform
velocity, provided that U and ¥ are mterpreted as radial and transverse velocities relative to
the moving center. -

It should be noticed that ¥ is a maximum when

r’-=4vt(c+%)=2f (K+»). €:))

If, following Taylor, we define the radius of the eddy at time ¢ as the radius of the ring of
maximum velocity, it appears that this radius is proportional to the square root of E+». The
constents K and » are thus of equal importance as far as the rate of increese in size of the eddy
is concerned.

The distribution of pressure may be inferred from equation (1). Putting R=0, we have

1
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The pressure thus increases from the center outward.’

The kinetic energy of the fluid may be regarded as made up of energy of radial motion and
energy of transverse motion. The former is infinite when there is a source or sink at the origin,
but the latter is always finite. Tts value is in fact
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The total energy of transverse motion at time ¢ is thus represented by an expression of

type ‘—;; whatever be the real value of 8, and so the law of decay is always the same.

If we regard the circle of maximum velocity as a boundary seperating the inside of the
vortex from the-outside, we find that the energy of transverse motion inside the vortex is always
& constant fraction of the total amount. This fraction Fis given by

F[etprade= [Metpragy, an

When =0, F—l—-? and is less than

%- In ‘this casé we have also

2. 0_3" 5 (12)
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where ('is a function of &. It should be noticed that the pressure does not become a minimum
when %p?’ is a maximum but is 2 minimum when r=0.
The angular momentum of the eddy is
M= Ln21fdr.npr 14

us _n
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The angular momentum remains constant, as we should expect from dynamical considerations.

The anguler momentum within the eddy is a constant fraction f of the whole, where
S erpmde— [ espnds. (1)

When 8-0,f='1—g e~5 and is quite smell; thus most of the angular momentum is outside the
vortex.
The circulation in & ring is 2xrV, and this is a maximum when

Et-s+ 1. (15)

1t is eesily seen that the maximum circulation decays according to a law of type g,whi]e the

maximum velocity decays according to a law of type %
The angular velocity

"
a-Y Bl B (16)
is & maximum when
r’
R- 8. (17)

The meximum angular velocity decays according to a law of type -

Oy, "'g ' (18)

where E is a constant.

Y¥ISCOUS FLUID MOTION AND THE QUANTUM THEORY OF RADIATION.

It follows from the Iast result that the total energy of transverse motion is proportional
to the maximum angular velocity. <This result is slightly analogous to the quantum law in the
theory of radiation. Pursuing the analogy we shall attempt to compare eritical values of the

angular momentum in Bohr's atomic theory with critical values of the Reynolds number l?

in the theory of viscous fluid motion. It should be noticed in the first place that angular
momentum has the same dimensions as (a Reynolds number) multiplied by (a mass and a kine-
matic viscogity). The mass required for our analogy may be the mass of an electron and the
viseosity the viscosity of the ether.

It should be noticed also that we can actually find instances of viscous fluid motion which
exist only for certain particular values of a constant.

58006—28——=22
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Let us consider, for instance, a type of eddy motion in which the transverse velocity V
is zero for r=0 and r = while some derivative %}TI is finite and different from zero for »=0.

An expression of type (7) evidently satisfies the conditions when 28+ 1=, hence & solu-
tion of the required type exists whenever 2s-+1 is a positive integer. Morcover, we got into
difficulties when we try to satisfy the conditions by mieans of a solution of (6) of type

” Ly m (m+1)
T-B’ {1 1+n— 2.9) ntd) it T+n—28 B+n—28) (n+3) @T5) '{ """" ] (19)

for this does not generally become zero when »— co. . When 8is very large, for instance, 1™ is prac-

tically equal to B ;—‘; To illustrate the way in which & solution of the required type can be
derived from the infinite series, let us consider the caso n=1, m=2. We may then write

I'=-Bt,{1 eI'""( =) 22 s)(4vt) }
-5t ~ 8 1 7/
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Multiplying V by a—Fk, where k is a positive integer and making s—%, we obtain a solution of the
requu'ed type. Webb assumes that for different eddies of the same radlus a, the radial velocity
at 7=g is proportional to the strength. This means that _

s=%—k%¥ - (21)
Where ) is & rondimensional constant, hence & is & Reynolds number and a solution of our
problem exists only for certain critical values of a Reynolds number.

ANOTHER METHOD OF SOLUTION.

Another exact solution of the equations of vana.ble motion of an 1ncompr9551ble viscous
fluid may be obtained as follows:
Let us endeavor to satisfy the equa.taon
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by expressions of type
4 = JeeM-1F cos gz, v —qeM—t7 sin qz (23)

where %, ¢, and \ are const.&nts These expressmns endent.ly satlsfy t.ho equatlon of con-
tinuity - - - .

Srg=0  * A7)
We find that equations (22) are satisfied if

—lg-k{k_—v (k*— g*) } M- cos g."c

_% gg- —Q{X—P(k'—g’)}euf_h sin q-‘t—kg’ ot 2—1n)
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These equations can be. satisfied either by putting & =g¢ or by putiing A=r(k*—¢*). The former
case is of no interest, for it corresponds to a well-known ecase of irrotational motion.
- In the latter case we have

1
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where C is & constant, p being supposed to be also constant. When %<g¢q the motion is dying
down while when k> ¢ the motion is becoming more violent. When k=g the motion is steady
and irrotational.

If at any instant we fix the value of p at y=0, we find that in the case of growing or un-

stable motion the pressure gradient (gs),-o is larger than in the steady case when k=¢. In

the case of a decaying motion the pressure gradient is less than in the steady case. This result
may be compared with the well-known theorem that a horizontally stratified atmosphere is
unstable when the lapse rate of temperature is higher than the admbn.blo value.

Another point worth noticing is that

ov ou
oz oy

Hence when the pressure over y=0 is fixed, the sign of the vorticity is different according as
k is greater than or less than g, i. e., according as the motion is growing or decaying.

5= (k*—¢*) e¥-t cos qr.



